
Exact and heuristic solution methods to the vehicle routing problem
with pickup and delivery and truck driver scheduling

Ole Johannes Lindsetha, Simen H. Søruma, Magnus Stålhanea,∗

a Department of Industrial Economics and Technology Management,
Norwegian University of Science and Technology,
Alfred Getz veg 3, N-7491, Trondheim, Norway

Abstract

This paper presents a new vehicle routing problem (VRP) to the literature which extends the

pickup and delivery variant of the VRP to also consider the hours of service regulations stipulated

by the European Union. To solve this problem, we present both an exact and a heuristic solution

method. The exact method is a branch-and-price (B&P) algorithm, where the subproblem com-

bines both routing of the vehicles and scheduling of the truck drivers rests and breaks. Further,

we propose several problem dependent pre-processing techniques which significantly reduce the

computational time. The heuristic proposed is an adaptive large neighborhood search (ALNS)

heuristic, with several new destroy and repair operators. To test the two methodologies, a set

of 648 new benchmark instances are proposed based on the geography and demographics of Nor-

way. The results of these tests show that the B&P algorithm can solve instances with up to 50

requests within 2 hours, while the ALNS can find near optimal solution to all instances within

20 minutes. We further use the ALNS heuristic to investigate the potential increase in profits for

a long haul transportation company by allowing trucks to service several transportation requests

simultaneously.

Keywords: truck driver scheduling, vehicle routing , pickup and delivery, branch-and-price,

adaptive large neighborhood search

1. Introduction

Vehicle routing problems are some of the most heavily studied problems in the operations

research literature over the last 60 years (Cordeau et al., 2007). However, there still exists many

gaps between academic research and requirements from real-world applications. One such gap

is the implementation of hours of service (HoS) regulations in the planning of routes for truck

drivers, which only recently has received attention from the research community (Goel and Irnich,

2017). In Norway, as in many other countries, the population is geographically dispersed, and great

distances are traveled to deliver cargo. An increased focus on short lead times in supply chains,

∗E-mail: magnus.staalhane@ntnu.no

Preprint submitted to Elsevier February 17, 2023

Preliminary version – February 17, 2023 – 9:16

combined with long distances, puts pressure on drivers, which in turn may lead to accidents related

to fatigue. To avoid accidents and make work less stressful for truck drivers, governments world

wide have introduced HoS regulations.

In Europe, the HoS regulations are enforced by the European Union through Regulation (EC)

No 561/2006 (European Union, 2006) regulating driving time, and Directive 2002/15/EC (Euro-

pean Union, 2006) regulating working time. The regulations define four driver activities: driving

time, working time, rests, and breaks. Driving time is the actual time a truck driver operates the

vehicle and is not restricted to when the vehicle is moving. Working time is the time the driver

uses on non-driving activities such as loading and unloading the vehicle, in addition to the time

spent driving. Waiting time is also included in the working time, unless it is part of a break or

rest.

A break is a short time period used for recuperation, while a rest is a longer time period in

which the truck driver manages his or her time. A daily rest must be completed within 24 hours

after the end of the last daily or weekly rest period, and the duration must be at least 11 hours.

Furthermore, a maximum of 9 hours of accumulated driving time since the last daily or weekly

rest is allowed. The duration of a break is at least 45 minutes, and a driver must take a break

after an accumulated working or driving time of at most 6 or 4.5 hours, respectively. Finally, the

accumulated driving and working time within a week must not surpass 56 hours and 60 hours,

respectively.

As can be seen in Section 2, the VRP literature has thus far only studied HoS regulations

in the context where an operator is to distribute cargo from a centrally located depot to a set

of geographically dispersed locations, using their own fleet of trucks. This is how many large

businesses typically operate, however, many small- and medium-sized businesses have insufficient

transportation needs to justify operating their own fleet of vehicles. Thus, they rely on third

party transportation companies to transport their cargo. Such transportation companies usually

fulfill the transportation requirements for many businesses simultaneously, and they therefore face

a VRP where cargo is to be picked up and delivered at multiple locations.

The purpose of this paper is to present a new problem to the research community, based on

a case of a transportation company serving multiple geographically dispersed businesses. The

problem extends the well-studied pickup and delivery problem with time windows (PDPTW), by

also considering the HoS regulations. The problem consists of transporting a profitable subset

of available transportation requests (henceforth referred to as a request), dispersed over a large

geographical area, using a fleet of trucks. A request consists of a pickup and a delivery location,

an earliest and latest time to start service at each of these locations, and the weight and volume

of the cargo. Each request pays a revenue, if transported, and the vehicles available to serve these

requests have limited capacity both in terms of weight and volume. We further assume that there

2

Preliminary version – February 17, 2023 – 9:16

is no central depot, so each vehicle has a (potentially) different starting location, and that the

problem is open ended, i.e. that a vehicle can end its route at any location. The objective is

to create one route for each vehicle, from its starting location, servicing a subset of the requests,

such that the total profit of the vehicle fleet is maximized. Due to the large distances involved,

the planning horizon spans several days, and thus HoS regulations have to be considered for the

drivers of these vehicles.

The contributions of this paper is an exact and a heuristic solution method for solving the

problem. The exact method is based on branch-and-price (BP), where the subproblem is solved

using a labeling algorithm. Several pre-processing techniques, tailored to this problem, are also

described. The heuristic method is an adaptive large neighborhood search (ALNS) heuristic,

where several new destroy and repair operators are presented. Further, we also present a set of

486 benchmark instances for the problem, based on real geographical data. Optimal solutions

or dual bounds for many instances are found using the exact solution method, while the ALNS

heuristic provides best-known solutions for the remaining instances. Insights into the performance

of the heuristic solution method are provided, including the contribution of each destroy and repair

operator. Finally, we analyze the benefit of allowing cargo from multiple requests on-board the

vehicle at the same time (Less-Than-Truckload transportation), over allowing only a single request

(Full Truckload transportation) which is the standard mode of operation for many transportation

companies today.

The remainder of this paper is structured as follows. In Section 2 we provide an overview of

existing literature related to the problem studied, while in Section 3 we give a formal problem

description and a route based mathematical model of the problem. Section 4 describes a BP

algorithm, and Section 5 presents an ALNS heuristic to solve the problem. Section 6 presents the

set of benchmark instances created for this problem, before Section 7 presents a computational

study of the solution methods, and gives som managerial instights. Finally, some concluding

remarks are given in Section 8.

2. Literature Review

The vehicle routing problem (VRP) is a thoroughly studied combinatorial optimization problem

where a set of transportation requests are to be transported from a depot to a set of customers

by a fleet of vehicles (Cordeau et al., 2007). The problem studied in this paper combines several

variants and extensions of the VRP, each of which has a rich body of research literature.

According to the classification scheme presented by Berbeglia et al. (2007), the problem studied

in this paper is a variant of the multi vehicle one-to-one pickup and delivery problem (m|1-1|PDP),

since it has more than one vehicle and exactly one pickup location and one delivery location for

all requests. The problem further extends the 1-1-PDP since it also incorporates several VRP

3

Preliminary version – February 17, 2023 – 9:16

extentions: it is open-ended (Li et al., 2007), includes time windows (Desrosiers et al., 1995),

multiple depots (Montoya-Torres et al., 2015), optional requests (Archetti et al., 2014), and truck

driver scheduling (TDS) (Goel, 2010). The problem is also an extension of the ship routing and

scheduling problem (SRSP) which can be modelled as a one-to-one open-ended PDP with time

windows, optional requests and a heterogeneous fleet (Christiansen and Fagerholt, 2014). In the

following we focus on the existing literature on the PDPTW and TDS, as these are the most

prominent characteristics of the problem.

Several exact solution approaches have been proposed for the one-to-one PDPTW. A Branch-

and-cut algorithm for the PDPTW was proposed by Cordeau (2006), and later improved by Ropke

et al. (2007). Ropke and Cordeau (2009) propose a Branch-and-Price-and-Cut algorithm, while

Baldacci et al. (2011) propose a set-partitioning-based integer formulation where a bounding pro-

cedure with two dual ascent heuristics and a cut-and-column generation procedure is used to solve

the problem. Gschwind et al. (2018) use bidirectional labeling to solve the same problem and

reveal that utilizing bidirectional labeling may reduce the computational time by more than 40 %.

Finally, Homsi et al. (2020) propose an exact BP algorithm to solve the SRSP.

Due to the high complexity of the problem and often limited available computational time,

heuristic solution methods have been widely used for the PDPTW. Early approaches include tabu

search based metaheuristics by Li and Lim (2003) and Nanry and Barnes (2000), and Large Neigh-

borhood Search (LNS) heuristics by Bent and Van Hentenryck (2003) and Curtois et al. (2018).

Ropke and Pisinger (2006) introduce the Adaptive Large Neighborhood Search (ALNS) as an ex-

tension of LNS to solve a PDPTW with a heterogeneous fleet of vehicles. The ALNS introduces

an adaptive layer facilitating for using several destroy and repair operators during the search while

each operator is rewarded according to the contribution in terms of finding high-quality solutions

or solutions which facilitate exploration. Gschwind and Drexl (2019) propose an ALNS heav-

ily inspired by Ropke and Pisinger (2006) to solve the the Dial-a-Ride-Problem (DARP), which

is a variant of the one-to-one PDPTW, focusing on the transportation of people (Doerner and

Salazar-González, 2014).

The Truck Driver Scheduling Problem (TDSP) consists of finding a schedule for a given vehicle

route which adheres to the HoS regulations. Methods solving the TDSP are needed as subroutines

in both exact and heuristic approaches for VRPs where the route duration spans several days. The

TDSP was first introduced by Archetti and Savelsbergh (2009) as the trip scheduling problem,

which consisted of finding a feasible driver schedule for a given vehicle route, adhering to the US

HoS regulations. The first study of the TDSP with the EU HoS regulations was that of Goel

(2009). He introduced a labeling algorithm for the problem that, among other things, allowed for

preemptive breaks and rests, and time windows. Goel (2010) extends the work by incorporating the

flexible EU HoS rules that allow for breaks and rests to be split in two parts. To solve this extended

4

Preliminary version – February 17, 2023 – 9:16

version of the problem he propose a Breadth-First-Search (BFS), which is guaranteed to find a

feasible schedule if it exists for the route. Drexl and Prescott-Gagnon (2010) propose a dynamic

programming approach in the context of an Elementary Shortest Path Problem with Resource

Constraints (ESPPRC) for the same set of regulations. Furthermore, Goel (2012) proposes a

dynamic scheduling method for both the EU and US HoS regulations where the duration of the

route is minimized. Finally, methods for the Canadian and Australian HoS regulations are proposed

by Goel and Rousseau (2012) and Goel et al. (2012), respectively.

Recently several extensions of the TDSP have been proposed. Goel and Kok (2012) consider

both single and multiple time windows for the TDSP, and the proposed method solves the single

time window case in O(n2) time. Furthermore, Rancourt et al. (2013) propose a TDS subroutine

for multiple time windows used in a Tabu Search heuristic. Goel and Vidal (2014) proposes a

method for minimizing the duration of truck driver schedules for the US regulations, based on

Goel and Kok (2012). The minimization is done as described by Goel (2012). Finally, Goel (2018)

proposes a method that restricts nighttime work while extending daily driving time and reducing

rests.

In recent years, combinations of the VRP and TDS, often referred to as the Vehicle Routing

and Truck Driver Scheduling Problem (VRTDSP) has received increased attention. The first

exact solution method for the VRTDSP was proposed by Goel and Irnich (2017), which solves the

problem with a Branch-and-Price algorithm where the pricing problem is solved using a modified

network, where additional nodes are inserted between each customer node, facilitating for uniquely

computing the length of each driver activity. Furthermore, Tilk and Goel (2020) propose a Branch-

and-Price-and-Cut algorithm using bidirectional labeling for solving the pricing problem based on

modified network proposed by Goel and Irnich (2017). Goel (2018) performs an experimental

analysis on the impact of hours of service regulations on feasibility, route length, costs, and road

safety in addition to reviewing the state-of-the-art in vehicle routing literature.

There also exist several heuristics for the VRTDSP. Zäpfel and Bögl (2008) propose a Genetic

Algorithm incorporating a Tabu Search heuristic for solving a VRPTW before personnel is as-

signed to each route using a simple heuristic respecting hours of service regulations. Furthermore,

Prescott-Gagnon et al. (2010) proposed a hybrid of an LNS algorithm and a Branch-and-Price

heuristic where new solutions are constructed by a Tabu Search based column generator, while

respecting the EU hours of service regulations. Goel (2009) considers the absolute EU regula-

tions and presents two methods for scheduling truck driver activities, and embed them into a

LNS algorithm. Kok et al. (2010) consider the flexibility rules from the EU regulations while also

considering working hour rules which are often ignored in the literature. It combines a restricted

dynamic programming heuristic and a scheduling heuristic. Furthermore, Rancourt et al. (2013)

enhance the search space of their unified Tabu Search heuristic by allowing intermediate infeasible

5

Preliminary version – February 17, 2023 – 9:16

solutions by using an objective function with self-adjusting penalties.

Goel and Vidal (2014) propose a Hybrid Genetic Search with Advanced Diversity Control

(HGSADC) based on the method proposed by Vidal et al. (2012). The former uses an extension

of the method proposed by Goel (2010) for checking feasibility of the vehicle routes with regards

to the EU hours of service regulations, while also considering the US, Canadian and Australian

hours of service regulations. Each individual is given a fitness value based on a penalized cost of

violating capacity and time window restrictions and a contribution score of the individual to the

diversity of the population. A set of speed-up techniques are proposed to solve the problem. Koç

et al. (2017) propose a multi-start heuristic with a combination of ALNS and MIP for solving a

VRTDSP with idling options and a more comprehensive objective function. Furthermore, Goel

et al. (2020) investigate the advantages of having a mixed fleet of single- and team drivers by

proposing a Hybrid Genetic Algorithm based on the method proposed by Goel and Vidal (2014).

Using team driving may be profitable as it opens the opportunity of the vehicle not staying idle

while one of the drivers is doing a rest. They conclude that considerable cost savings may be

achieved.

In conclusion, the problem may be classified as a one-to-one open-ended pickup and deliv-

ery problem with time windows, multiple depots, optional requests, and truck driver scheduling.

Nevertheless, as the most prominent attributes are PDPTW and TDS, the problem is henceforth

referred to as the pickup and delivery and truck driver scheduling problem (PDTDSP). To the

best of our knowledge, this problem has not been studied previously in the literature, and thus no

exact nor heuristic solution methods have been proposed for solving this problem.

3. Problem Description and Mathematical Model

The PDTDSP consists of n requests that may be transported by a set of V vehicles. The

problem may be defined on a graph G = (N,A), where N is the set of nodes and A ⊂ N × N is

the set of arcs connecting the nodes. The set N = NP ∪ND ∪v∈V {o(v), d(v)} may be divided into

the disjoint subsets NP = {1, ..., n}, ND = {n + 1, ..., 2n}, and one origin and destination node

pair (o(v),d(v)) for each vehicle. Each request is modeled with two nodes, node i representing the

pickup location and n+ i representing the delivery location. A node i includes the information of

the weight and volume, DW
i and DV

i , of the cargo, time window for service, [T i, T i], duration of

service at the node, Si, and the revenue earned, Ri. The revenue at the delivery nodes is set to 0,

while the cargo weight and volume is the negative of the corresponding pickup node. Furthermore,

each arc holds information of the driving time, Tij , and cost, Cij , for traversing the arc. The

capacity of each vehicle in terms of weight and volume is given as WC and V C .

A feasible route for vehicle v is a path through the network from o(v) to d(v), where each

node is visited at most once, delivery nodes are visited after their corresponding pickup node, the

6

Preliminary version – February 17, 2023 – 9:16

vehicle’s capacity is not violated, and the hours of service regulations are respected. For the latter,

T drive|R and T elapsed|R, and T drive|B and T elapsed|B , describe the maximum allowed accumulated

driving time and elapsed time since the last rest or break, respectively. In addition, the maximum

allowable weekly accumulated driving time and working time is denoted as T drive|W and Twork|W ,

respectively. The horizon of the problem is given as Thorizon, while the minimum length of a rest

and a break are given as T rest and T break, respectively.

A route based formulation of the problem is stated below. The set Rv denotes the set of routes

driven by vehicle v ∈ V and is indexed by r. The parameter Pvr denotes the profit from utilizing

vehicle v ∈ V and route r ∈ Rv, and is calculated as the total revenue of the requests serviced

minus the total transportation cost of the route. Aivr takes the value 1 if pickup i ∈ P is served

by vehicle v ∈ V on route r ∈ Rv, 0 otherwise. A variable λvr is equal to 1 if vehicle v ∈ V drives

route r ∈ Rv, 0 otherwise.

max z =
∑
v∈V

∑
r∈Rv

Pvrλvr, (1)

∑
v∈V

∑
r∈Rv

Aivrλvr ≤ 1, i ∈ NP , (2)

∑
r∈Rv

λvr = 1, v ∈ V, (3)

λvr ∈ {0, 1}, ∀v ∈ V, r ∈ Rv. (4)

The objective function (1) computes the total profit from assigning at most one route to each of the

vehicles in the problem. Constraints (2) ensure that each transportation request is served at most

once, while constraints (3) ensure that only one route can be assigned to each vehicle. Constraints

(4) ensure that λvr is binary.

4. Branch and Price

Each λ-variable, henceforth referred to as a column, in the mathematical model described

above, may be described by a path from o(v) to d(v) through the graph G. The number of feasible

paths through the graph grows exponentially with the number of nodes and arcs. Therefore it is

impractical, or even impossible, to generate all of them for large problem instances. To circumvent

this problem, we propose a solution method based on Branch-and-Price (Barnhart et al., 1998),

where only a subset of all columns are explicitly considered, while implicitly accounting for the

remaining columns.

Branch-and-Price is a branch-and-bound (B&B) approach, where the linear relaxation of the

mathematical model is solved in each B&B-node using column generation (Lübbecke and Desrosiers,

2005). In column generation, a linear program (LP), referred to as the master problem, is solved

by iterating between a restricted master problem (RMP) consisting of a subset of columns, and

7

Preliminary version – February 17, 2023 – 9:16

a subproblem (SP) tasked with finding columns with a positive reduced cost (for a maximization

problem) that may improve the solution to the RMP. In a given iteration, the RMP is solved as a

LP to obtain a dual solution which is used to formulate the objective of the SP. The SP is usually

solved using dynamic programming, often formulated as labeling algorithms. If the SP finds a

column with positive reduced cost, it is added to the RMP, initiating a new iteration. Otherwise

there exist no column that improves the RMP, and the current solution is thus optimal for the

full LP. Normal branch-and-bound rules are used to branch, prune and search the tree. For the

problem solved in this paper, the RMP is defined by the model (1)–(4), but where the binary

requirements are relaxed, and Rv only contains a small subset of the feasible routes for vehicle v.

Section 4.1 describes the labeling algorithm, while Section 4.2 presents the definition of a label

with resources and resource windows. Furthermore, Section 4.3 introduces the resource extension

functions of the algorithm, and the dominance criterion is described in Section 4.4. Finally, we

present some tailored pre-processing techniques in Section 4.5, and describe some implementation

details in Section 4.6.

4.1. Labeling Algorithm

The SP is solved as a labeling algorithm, following the description given by Irnich and De-

saulniers (2005), where labels are used to represent a feasible path from the start node s to a node

i in the network, and the resources accumulated along that path. A label L(i, T, L∗), contains the

last node on the path, i, a vector of resource values, T , and a pointer to the parent label, L∗ used

to retrace the full path. A pseudo code for a generic labeling algorithm is given in Algorithm 1.

The labeling algorithm starts by initiating a set of unprocessed labels, U , only consisting of one

label L(o(v), T0, NULL) for each vehicle, where T0 is the initial resource vector, and the parent

label pointer is a zero pointer, NULL. Note that since the only difference between the vehicles

are their starting node (o(v)), we can handle all of them in a single subproblem.

In the algorithm, a selected label L = (i, T, ∗), representing a partial path from node s to i with

accumulated resources T , is removed from U . This partial path is extended along all arcs (i, j) ∈ A

to create new partial paths, each one represented by a label L′. The resource consumption of label

L′ is calculated according to so-called resource extension functions (REF), given by fij(T). The

resource consumption of each extended label is then checked to see if it is within the resource

window [aj , bj] at node j. If it is, then it is checked for dominance against other labels ending at

node j, stored in the set Lj . If L′ is not dominated it is added to Lj and U , and the algorithm

removes all labels dominated by L′. The algorithm terminates when there are no unprocessed

labels left in U , returning all non-dominated labels who has reached the destination node d(v). In

the following we describe which resources are stored in T , what their resource window is, and the

REFs for each arc.

8

Preliminary version – February 17, 2023 – 9:16

Algorithm 1 Label algorithm

1: U = ∪v∈V{L(o(v),R0, NULL)}
2: while U 6= ∅ do
3: L = (i, T, ∗) = RemoveFirst(U),
4: for (i, j) ∈ A do
5: L′ = (j, fij(T), L)
6: if aj ≤ fij(R) ≤ bj then
7: if no label in Lj dominates L′ then
8: Lj = Lj ∪ {L′}
9: U = U ∪ {L′}

10: remove labels dominated by L′ from Lj and U
11: end if
12: end if
13: end for
14: end while
15: return paths in ∪v∈VLd(v)

4.2. Label Resources & Resource Windows

Table 1 presents the resources used in defining a label representing a partial path ending at node

i with notation, description, and resource window. The resources are based on those proposed by

Ropke and Cordeau (2009) and Goel and Irnich (2017) for the PDPTW and VRPTDS, respectively.

Furthermore, resources for handling accumulated weekly driving and working time are added.

Table 1: Label definition with corresponding resources and resource windows.

Resource Resource Description Resource Window

p Accumulated reduced cost after visiting node i [−∞,∞]

lW Load of the vehicle after visiting node i in terms of weight [0,WC]

lV Load of the vehicle after visiting node i in terms of volume [0, V C]

ttime Time elapsed since start of route [Ti, Ti]

tdist Remaining driving time to the next node, j [0, 0]

tdrive|R Accumulated driving time since the end of the last rest [0, T drive|R]

telapsed|R Time elapsed since the end of the last rest [0, T elapsed|R]

tlatest|R Latest time for when a rest must end [0,∞]

tdrive|B Accumulated driving time since the last break or rest [0, T drive|B]

telapsed|B Time elapsed since the end of the last break or rest [0, T elapsed|B]

tlatest|B Latest time for when a break must end [0,∞]

tdrive|W Total accumulated weekly driving time [0, T drive|W]

twork|W Total accumulated weekly working time [0, Twork|W]

U Set of unreachable nodes on the route U ⊆ NP

O Set of requests started but not completed on this route O ⊆ NP

9

Preliminary version – February 17, 2023 – 9:16

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

i (D.80)

j (D.81)

fvisit (D.82)

fstart (D.83)

fdrive
∆ (D.84)

frest
T rest (D.85)

f break
T break (D.86)

nfit
ij (D.87)

ndull
ij (D.88)

110

Figure 1: Auxiliary Network proposed by Goel and Irnich (2017). The network describes the possible extensions of
a label by traversing the arc (i, j).

The last node on a partial path represented by label L is denoted i(L) with a a similar notation

is used for the resources. Thus, the entire resource vector of a label is:

T (L) = [p(L), lW (L), lV (L), ttime(L), tdist(L), tdrive|R(L), telapsed|R(L), tlatest|R(L),

tdrive|B(L), telapsed|B(L), tlatest|B(L), tdrive|W (L), twork|W (L),U(L),O(L)]

For any extension of a label, L, along the arc (i, j) to be feasible, the resources must stay within

their respective resource windows stated in Table 1.

4.3. Resource Extension Functions

To account for the HoS regulations, Goel and Irnich (2017) presented a modified network to

handle the driver scheduling constraints within the labeling framework of Irnich and Desaulniers

(2005). Between each pair of nodes (i, j), the arc connecting them is replaced with a small network,

as shown in Figure 1. Instead of a single REF, this network has five REFs: fstart, fdrive, frest,

f break, and fvisit.

After ending the service at node i, fstart initializes the start of driving towards node j, by setting

tdist(L′) = Tij . The REF fdrive uses a pre-calculated maximum driving time which guarantees

that the driving activity does not violate any constraints. The maximum driving time is stated

in Equation (5) and is given as the minimum of the remaining driving to reach the destination

node, and the remaining allowed driving and working time before a rest or break must be taken,

respectively. Furthermore, the REFs frest and f break are used to model taking a rest of T rest

hours or a break of T break hours, respectively. Finally, fvisit handles the service at node j, while

extending the last rest or break to avoid unnecessary waiting time.

∆ = min[tdist, T drive|R − tdrive|R, T drive|B − tdrive|B ,

T elapsed|R − telapsed|R, T elapsed|B − telapsed|B]
(5)

10

Preliminary version – February 17, 2023 – 9:16

Table 2 summarizes the resource extension functions fdrive, f break, frest, and fvisit. The

resources in the resource column indicate the new value of the resource in label L′ after being

extended by the REF from label L along arc (i, j). Furthermore, the REF columns fdrive, f break,

frest, and fvisit state how the resource is updated based on the previous resource value and the

changes being made by performing the driver activity modeled by the REF. For ease of exposition

we have left all entries where the resource value stays unchanged, as blank in the table.

Table 2: Summary of the extensions of resources handled by the resource extension functions fdrive, fbreak, frest
and fvisit

.

Resource
Resource Extension Function

fdrive fbreak frest fvisit

p(L′) p(L) + Cij

lW (L′) lW (L) +DW
j

lV (L′) lV (L) +DV
j

ttime(L′) ttime(L) + ∆ ttime(L) + T break ttime(L) + T rest max{ttime(L), T j}+ Sj

tdist(L′) tdist(L)−∆

tdrive|R(L′) tdrive|R(L) + ∆ 0

telapsed|R(L′) telapsed|R(L) + ∆ telapsed|R(L) + T break 0
max{telapsed|R(L), T j−

tlatest|R(L)}+ Sj

tlatest|R(L′) ∞
min{tlatest|R(L), T j+

Sj − telapsed|R(L)}
tdrive|B(L′) tdrive|B(L) + ∆ 0 0

telapsed|B(L′) telapsed|B(L) + ∆ 0 0
max{telapsed|B(L), T j−

tlatest|B(L)}+ Sj

tlatest|B(L′)
min{tlatest|B(L), tlatest|R(L)+

telapsed|R(L)− telapsed|B(L)−∆}
∞ ∞

min{tlatest|B(L), T j+

Sj − telapsed|B(L)}
tdrive|W (L′) tdrive|W (L) + ∆

twork|W (L′) twork|W (L) + ∆ twork|W (L) + Sj

U(L′) U(L) ∪ {j} ∪ Uj,t

O(L′)

{
O(L) ∪ {j} if j ∈ P
O(L)\{j −NP } if j ∈ D

Equation (6) states that the modified cost along arc (i, j), Cij , where πj is the value of the

dual variable from constraints (2) and αv is the value of the dual variable from constraints (3).

Cij = Rj − Cij − πj −

αv if i = o(v)

0 otherwise
(6)

4.4. Dominance Criteria

The dominance criterion is a pairwise comparison of the resources and are based on the domi-

nance criteria of Ropke and Cordeau (2009) and Goel and Irnich (2017). Furthermore, dominance

criteria are added for tdrive|W and twork|W . For a label, L1, to dominate another label, L2 the

following conditions must apply:

• i(L1) = i(L2)

11

Preliminary version – February 17, 2023 – 9:16

• p(L1) ≥ p(L2)

• V(L1) ⊆ V(L2)

• O(L1) ⊆ O(L2)

• ttime(L1) ≤ ttime(L2)

• tdist(L1) ≤ tdist(L2)

• tdrive|R(L1) ≤ tdrive|R(L2)

• telapsed|R(L1) ≤ telapsed|R(L2)

• tlatest|R(L1) ≥ tlatest|R(L2)

• tdrive|B(L1) ≤ tdrive|B(L2)

• telapsed|B(L1) ≤ telapsed|B(L2)

• tlatest|B(L1) ≥ tlatest|B(L2)

• tdrive|W (L1) ≤ tdrive|W (L2)

• twork|W (L1) ≤ twork|W (L2)

The dominance criteria state that the current node of the label must be the same, the accumu-

lated reduced cost must be larger or equal, and that the elapsed time and the remaining driving

time to node the next node must be smaller or equal. Furthermore, the accumulated driving time

since the last rest or break and the elapsed time since the last rest or break must be smaller or

equal, while the latest end of the last rest or break must be larger or equal. Finally, the total accu-

mulated weekly driving and working time must be smaller or equal. It was shown by Desaulniers

et al. (1998) that as long as all resources are non-decreasing, doing a pair-wise comparison like

above, is sufficient to establish a dominance relation.

4.5. Data Preprocessing

The solution time of the labeling algorithm increases with the number of labels created. Con-

sequently, it is desirable to reduce the number of labels, which may be achieved by using certain

preprocessing techniques. To discard labels that cannot lead to feasible vehicle routes as early as

possible in the labeling process, we solve a simplified version of the PDTDSP problem, where we

only consider a subset of the resources, on a subset of nodesW . The goal is to determine the latest

possible time we can start service at node k, given that we subsequently have to visit all the nodes

in W .

We solve this problem on a graph with N = {k} ∪W ∪ d(v) and use the following subset of

the resources described above: ttime, tdist, tdrive|R, telapsed|R, tlatest|R, and O, remove the break

related terms from the calculations of ∆ and omit the f break REF. In addition, we introduce two

new resources, tslack keeping track of how much we can postpone the arrival at node k and still

have a feasible schedule, and twait which is the accumulated waiting time. These resources are

initiated as tslack(L0) = T j − T j and twait(L0) = 0, and are updated using the fvisit REF as:

twait(L′) = twait(L) + max{T j − ttime(L), 0}, (7)

12

Preliminary version – February 17, 2023 – 9:16

tslack(L′) = min{tslack(L), T j − ttime(L) + twait(L)}. (8)

We also introduce a resource vi for i ∈W which is increased to 1 when node i is visited. Since this

problem will only be solved on small networks, we also omit the dominance tests from the labeling

algorithm. The latest time it is possible to arrive at node k, we denote tlatek (W) = T k + tslack(L),

is the partial path at node d(v) with the smallest value of tslack(L) given that vi = 1,∀i ∈W .

This can be used both to discard paths the cannot lead to feasible routes, and to increase the

size of the unreachable set. We define the following two sets:

Uk(t) =

{
i ∈ NP |tlatek (W) < t,W =

{i, i+ n, k + n}, if k ∈ NP

{i, i+ n} if k ∈ ND

}
, (9)

Fk(t) =

{
W ⊂ NP

∣∣∣∣∣|W | ≤ 3,WD = {i ∈ ND|i− n ∈W}, tlatek (WD) < t

}
. (10)

where Uk(t) is the set of all requests where it is not possible to service both the pickup and delivery

node within their time windows, by extending a partial path at node k arriving later than time

t. The set Fk(t) contain all subsets of pickup nodes with a cardinality less than 4 where is it

not possible to service all the corresponding delivery nodes by extending a partial path at node k

arriving later than time t.

Then we can re-define the fvisit for U(L′) = U(L)∪ {j} ∪ Uj(ttime(L′)) to increase the number

of unreachable nodes, which may lead to more dominance. Further, we may discard any label L

if ∃W ⊆ O(L),W ∈ Fi(L)(t
time(L)). In this case we know that it is not possible to deliver all the

open requests within their time windows, and thus label L may be discarded.

4.6. Implementation details

We use several strategies to reduce the time spent solving the SP. The first strategy is to solve

the SP without the break-related resources and REFs. By doing this we solve a relaxation of the

original SP, and then check if it is possible to insert breaks into the optimal solution to this relaxed

SP. Three situations may occur. 1) We find a reduced cost column where it is feasible to insert

breaks, 2) the optimal solution to the relaxed SP has a reduced cost of 0, and 3) we find positive

reduced cost columns, but itis not possible to insert breaks into any of them. In the first two cases,

we either initiate a new iteration of CG, or stop as we have proven optimality. Only in case 3, do

we have to solve the full SP with the break resources added.

The second strategy is to solve the labeling algorithm on a reduced graph, to quickly find

positive reduced cost columns. Here we modify the description of Desaulniers et al. (2008) to a

pickup and delivery context. In each CG iteration we select a subset of arcs (i, j) ∈ A : j ∈ NP

based on their reduced cost (cij = Pj −α∗j −Cij). For each node j ∈ NP we select the n incoming

arcs with the highest reduced cost, while for i ∈ N we choose the n outgoing arcs with highest

reduced costs. Note that we keep all incoming arcs into delivery nodes (ND) since extensions along

13

Preliminary version – February 17, 2023 – 9:16

these arcs are limited by the set O. We then create networks with only the n best and 10 best

arcs into/out of each node are added to the network. The exception is that We keep all arcs into

delivery nodes, as feasible extensions into delivery nodes are severely limited by the set O.

The acceleration strategies are applied in a hierarchical order, where each new CG iterations

starts from the top, and stops when at least one feasible reduced cost column is found. The order

is the following:

1. Relax break resources and reduced arc set with n = 5

2. Relax break resources and reduced arc set with n = 10

3. Relax break resources

4. Full subproblem (only if 3. finds a non-feasible column with positive reduced cost)

For handling fractional solutions while solving the RMP, a Branch-and-Bound (BB) tree is

implemented. A best-first strategy is implemented to ensure that a minimum number of nodes is

investigated. Branching is performed on the most fractional arc, where the one branch requires

the arc to be used, while the arc cannot be used in the second branch. For the PDPTW, Ropke

and Cordeau (2009) noted that their dominance criterion requires the so-called delivery trian-

gle inequality to be fulfilled, and this may no longer hold after branching decisions are added.

They handled this by altering the arc cost matrix, and we have taken the same approach in our

implementation.

5. Adaptive large neighborhood search heuristic

In this section we present an adaptive large neighborhood search heuristic for the PDPTDS. The

heuristic follows the main framework presented by Ropke and Pisinger (2006), and use operators

inspired by Ropke and Pisinger (2006) and Demir et al. (2012). In addition, we present several new

operators tailored to the PDPTDS. In Section 5.1 we give an overview of the ALNS framework,

before presenting the destroy and repair operators used in Section 5.2.

5.1. Overview of the Heuristic

An overview of the ALNS, using a set of destroy operators Γ and a set of repair operators

Υ, is given in Algorithm 2. First, an initial solution S0 is constructed by a greedy construction

heuristic and set as the best known (SB) and current solution (S), respectively. The initial weights

of the removal and insertion operators, wΓ and wΥ are set, before setting the initial temperature

T and the cooling rate c of the simulated annealing. As long as the stop-criterion is not met,

the algorithm continues to iterate by destroying and repairing solutions. In each iteration of the

algorithm, a removal operator, γ, and an insertion operator, υ, is drawn randomly based on the

weighed probability of each operator wΓ and wΥ. The solution is altered by the removal and

14

Preliminary version – February 17, 2023 – 9:16

Algorithm 2 ALNS
1: S0 = greedyConstruction()
2: S ← S0, SB ← S0

3: Initialize weights: wΓ and wΥ

4: Initialize cooling rate c
5: T = − τ ·f(S0)

ln(0.5)

6: k = 0
7: while stop-criterion not met do
8: k = k + 1
9: Select removal γ ∈ Γ and insertion υ ∈ Υ operator using wΓ and wΥ

10: SC = υ(γ(S))

11: if e
f(SC)−f(S)

T > U(0, 1) then
12: S ← SC

13: update reward for γ and υ
14: if f(SC) > f(SB) then
15: SB ← SC

16: end if
17: end if
18: if k mod µ = 0 then
19: Update weights wΓ and wΥ

20: end if
21: T = T · c
22: end while
23: Return SB

insertion operators, and the solution is accepted according to a simulated annealing acceptance

criterion. If the altered solution is accepted, a reward is given to the current removal and insertion

operators based on if the solution is a new best-known solution, improving solution or a worse but

accepted solution, respectively. Furthermore, the best-known solution is updated if the altered

solution is a new best-known solution. Additionally, every µ-iteration, the weights of the operators

are updated. Once the stopping criteria is met, the best solution found during the search, SB is

returned.

5.2. Operators

In this section, we present the removeal and insertion operators used in the sets Γ and Υ. In the

following, whenever it is stated that a request is removed from the solution, both the pickup and

delivery node are removed. Additionally, the insertion of a request indicates inserting the pickup

and delivery node into the best route and position according to the operator’s criterion.

The implemented removal operators are:

• Random Removal removes one random request from the solution and is implemented as

described by Ropke and Pisinger (2006).

• Route Removal removes all requests in one random route and is implemented as described

by Gschwind and Drexl (2019).

15

Preliminary version – February 17, 2023 – 9:16

• Shaw Removal is implemented as described by Ropke and Pisinger (2006) and is based

on a relatedness measure between requests. The relatedness measure is stated in Equation

(11) and is a weighted sum of the shortest time between two pickup nodes and two delivery

nodes, the difference in the start of time windows of the two requests, and the difference

in demand in terms of weight and volume. The weights are given as αTmin , αT , αDW and

αDV , respectively. Following the implementation of Ropke and Pisinger (2006), a randomness

factor, pshaw is introduced to increase the exploration of the operator.

R(i, j) = αTmin (Tmin
ij + Tmin

(i+n)(j+n)) + αT (|T i − T j |+ |T i+n − T j+n|)+

αDW (|DW
i −DW

j |) + αDV (|DV
i −DV

j |)
(11)

where

Tminij = Tij +

⌈
Tij

T drive|R
− 1

⌉
T rest (12)

• Shaw Removal Scheduling is similar to the Shaw Removal operator. However, the re-

latedness measure is designed to exploit information from truck driver scheduling, and is

calculated as stated in Equation (13). This states a weighted sum of the spatial difference

between the requests and the difference in time of finished service at both pickup and deliv-

ery node. Furthermore, at the end of service, the relatedness in terms of normalized driving

time since the last rest or break and the normalized elapsed time since the last rest or break

is calculated. Requests which are similar in terms of these attributes are expected to be

easily relocatable. A randomization factor, pscheduling is used to randomize the operator in

a similar manner to the Shaw Removal operator.

R(i, j) = α1(Dij +Di+NP ,j+NP) + α2((ttime
i − ttime

j) + (ttime
i+n − ttime

j+n))

α3

(
t
drive|R
i − tdrive|Rj

T drive|R

)
+ α4

(
t
elapsed|R
i − telapsed|Rj

T elapsed|R

)
+

α5

(
t
drive|B
i − tdrive|Bj

T drive|B

)
+ α6

(
t
elapsed|B
i − telapsed|Bj

T elapsed|B

) (13)

• Worst Removal removes requests that give the highest difference in the total profit of a

route with and without a specific request, and is implemented as described by Ropke and

Pisinger (2006). As with Shaw Removal, a randomness factor, pworst, is included in the

removal process.

• Outlier Removal calculates the average time of a route, and removes the request which

makes the total time of the route deviate the most from the average time when the request

is removed from the solution. This is implemented following the Neighborhood Removal

described by Demir et al. (2012) and is adjusted to a PDP structure.

• Historical Knowledge Removal removes requests with a position cost farthest from their

optimal historical recorded position cost. Thus, removing requests with the presumed highest

16

Preliminary version – February 17, 2023 – 9:16

negative impact on the solution. The position cost of request i ∈ NP is defined as stated

in Equation (14) where p(i) and f(i) is the arc preceeding and following node i on the

route, respectively. The implementation follows the description by Demir et al. (2012) and is

adjusted to incorporate a PDP structure by adding the cost of both the pickup and delivery

node. A randomization factor, phistorical is used to randomize the operator similarly to the

Shaw Removal operator.

ci = Cp(i) + Cf(i) + Cp(i+n) + Cf(i+n) (14)

• Node Neighborhood Removal chooses a random request and removes all requests with

a pickup or delivery node within a given radius of the pickup node of the removed request.

The radius is increased until more than or equal to a specific number of removals have

been executed. This is implemented as described by Demir et al. (2012) and is adjusted to

incorporate a PDP structure. An example is given in Figure 2.

(a) Before removal. (b) After removal.

Figure 2: Illustration of Node Neighborhood Removal. P5 and all pickup and delivery nodes within a given radius
from pickup node P5 are removed from the solution.

In each removal operation, except Route Removal and Node Neighborhood Removal, a per-

centage in the interval [ξ, ξ] of the requests handled in the current solution is removed.

The implemented insertion operators are:

• Greedy Insertion inserts requests, according to a list sorted on descending revenue, at the

position yielding the largest increase in profit. This is repeated until no more insertions are

profitable/feasible.

• k-Regret inserts the request with the largest accumulated difference between the best in-

sertion and the k − 1 best insertions. 2-regret, 3-regret, and |V|- regret is used. The imple-

mentation of the operator follows the description given by Ropke and Pisinger (2006).

17

Preliminary version – February 17, 2023 – 9:16

• GRASP operator (Feo and Resende, 1989) that builds a restricted candidate list holding

the subset of feasible request/vehicle combinations that gives the largest increase (or smallest

decrease) in profit. From this list, one request/vehicle combination is chosen at random and

inserted into its best position. Two variants of the insertion is created: one only allowing

profitable insertions, and one allowing both profitable and non-profitable insertions.

To add more randomization to the search, a noise parameter, κ, is implemented as described

by Ropke and Pisinger (2006) for Greedy Insertion and k-regret. The insertion cost of a request is

calculated as the increase in the objective value of inserting the request at its best position in the

route according to the criterion of the insertion operator.

5.3. Scheduling Algorithm

To check that a route is respecting the hours of service regulations, Algorithm 1 is used on

a modified network consisting of a path representation of the route, with the intermediate nodes

(dull and fit) inserted between each node. Since, we only care about checking feasibility of the

route with respect to the hours of service regulations, the resource vector is reduced to:

R(L) = [ttime(L), tdist(L), tdrive|R(L), telapsed|R(L), tlatest|R(L), tdrive|B(L), telapsed|B(L),

tlatest|B(L), T drive|W (L), Twork|W (L)]
(15)

6. Instance Generation

This section describes the generation of the benchmark instances for the PDPTDS. The in-

stances are generated from time and distance matrices between 132 locations in the southern, and

central, parts of Norway (see Figure 3). In addition, clusters of locations (regions) are defined

around some of the largest cities in Norway (Oslo, Bergen, Stavanger, Kristiansand and Trond-

heim). This is done to enable a balance between short- and long-distance haulage, to ensure that

there is a flow of transportation requests out of the Oslo region as this is the hub for international

import, and a net flow into the other large regions which are considered industry hubs. A cabinet

volume of 96 cubic meters (m3) and a maximum weight capacity of 30 tons are used for the vehicles

(ColliCare). However, the latter may easily be changed to 25 tons for complying with the capacity

restrictions of the European Union.

A transportation request specifies the pickup and delivery location of the cargo, the weight, and

volume of the cargo, the time window for starting service at each location, the revenue received

for transporting the cargo, and the time required for servicing at each location. The generation of

pickup and delivery locations is done randomly based on a weighted probability distribution for

the set of possible locations. We assume a positive correlation between the population of a area

and the number of transportation requests into/out of that area, and the weighted probability of

each location is therefore based on its proportion of the total population of all locations. Pickup

18

Preliminary version – February 17, 2023 – 9:16

Figure 3: Overview of the 132 locations sampled from in the instance generation.

and delivery within the same region is allowed in 20 % of the requests, and the pickup and delivery

location cannot be the same. To capture the role of the Oslo region as the main import hub

of Norway, the population of all locations in the Oslo region is adjusted down by 30 % when

calculating the probability of being a delivery location, while the population of the other regions

is adjusted down by 30 % when calculating the probability of being a pickup location. Thus, the

expected flow of transportation requests is expected out of the Oslo region, and into the other

regions.

To create instances with different characteristics, different time window width is chosen for

different subsets of instances. For a given instance all requests have time windows within the

intervals, 12-24 hours, 24-48 hours, or 48-144 hours. A start time for the pickup location is

randomly chosen from the interval 0-144 hours and is only accepted if it is possible to deliver

the cargo to the delivery location within the end of the planning horizon. Furthermore, the time

windows at the two locations must be of the required width. This is illustrated in Figure 4. Time

windows are regenerated if the end of the time window at either the pickup or delivery location

exceeds 144 hours. Furthermore, the time window start at the delivery location is set to the start

time of the time window at the pickup location with the addition of the driving time between the

locations.

The weight of the cargo of a transportation request is chosen in one of the two intervals, 1-10

19

Preliminary version – February 17, 2023 – 9:16

Figure 4: Generation of time windows of length 12 hours.

and 10-20 tons. Furthermore, the volume of the cargo is chosen randomly from an interval given

as the weight of the cargo multiplied by 2 plus/minus 10. Furthermore, the service time at each

location is given as 0.1 times the weight.

The cost of an arc Cij is set to the total distance in kilometers between location i and j. The

revenue of each cargo is then scaled based on the distance directly from pickup location i to delivery

location i + n, Ci(i+n) and, the weight of the cargo, DW
i . Furthermore, a randomness factor, ε,

on the interval [0.9, 1.1] is included to randomize the revenue. A factor, h, is calculated as 1.5

divided by the expected cargo weight, E[DW], for the weight interval of the instance, and the

profit function is given as stated in Equation (16). This profit function makes most transportation

requests profitable to transport when going directly from pickup location to delivery location.

Pp = h ·DW
p ·Dpd · ε (16)

The number of available vehicles in a given instance is based on the number of transportation

requests of the instance. For each number of transportation requests we create three vehicle fleets

with
⌊ |NP |

6

⌋
, |N

P |
5 , and

⌈ |NP |
4

⌉
vehicles, respectively.

A dataset consists of all instances created when combining all numbers of transportation re-

quests, time window intervals, weight intervals, and the number of vehicles. The number of trans-

portation requests considered are 10, 15, 20, 25, 50, 75, 100, 150, 200. Each data set consists

of 162 instances and a total of four data sets are created. An instance with 100 transportation

requests, 20 vehicles, a time window interval of 12-24 hours, a weight interval of 1-10 tons from

data set 1D is denoted as 1D100R20V12-24T1-10W. For each dataset, a pool of 200 transporta-

tion requests is created for every combination of the attributes. Thus, each instance with a lower

number of requests consists of the first x requests, such that an instance having e.g. 150 trans-

portation requests, the first 100 transportation requests are identical to an instance having 100

transportation requests when all other attributes are equal for the given dataset. The same is

done for the starting location of each vehicle in each data set. The data sets can be found at

http://axiomresearchproject.com/publications/.

20

Preliminary version – February 17, 2023 – 9:16

7. Computational study

This section presents the results obtained by running an implementation of the BP algorithm

presented in Section 4 and the ALNS algorithm presented in Section 5 on the benchmark instances

described in Section 6. First, an overview of the results of the Branch-and-Price algorithm is pre-

sented in Section 7.1. Then, the parameter tuning and selection process for the ALNS is described

in Section 7.2 while Section 7.3 analyzes the performance of the ALNS algorithm compared to

the exact BP results. Section 7.4 elaborates on the operator performance. Finally, Section 7.5

investigates the difference between Full Truckload and Less-Than-Truckload transportation.

The RMP of the BP algorithm is solved using Gurobi 9.0, while both the labeling algorithm

of the BP and the ALNS algorithm is implemented using Java 11. All computational experiments

are performed on a computer having a 16 core 4x2.2GHz AMD Opteron 6274 CPU and 128 Gb of

RAM while using CentOS 7.9.2009. Due to the random nature of the ALNS method, the algorithm

is run ten times on each instance to facilitate analysis of the performance using average values.

The runtime limit for solving each instance is set to 20 minutes (1200 seconds).Throughout the

analysis, the optimality gap is calculated as the difference between the primal solution of the given

method and the best known dual solution, divided by the best known primal solution. Detailed

results of all test instances, can be found at http://axiomresearchproject.com/publications/.

7.1. Results from the Branch-and-Price algorithm

To test the Branch-and-Price method, and investigate the contribution of the pre-process tech-

niques suggested in Section 4.5, we tested all instances with up to 50 transportation requests. All

instances were given a maximum computing time of 7200 seconds. Table 3 shows the number of

instances, out of 72, where the optimal solution (# opt.) or a dual bound (# DB) is found, and

the average computing time (Avg. time) both when solving with and without the pre-processing

techniques.

The results show that the pre-processing techniques greatly increases the number of instances we

are able to solve within the time limit, and that the average computing time decreases substantially.

We further see, that this difference increases with the number of requests in the instances. Overall,

the BP is able to solve almost twice the number of instances within the time limit, and cut the

average computing time in half, when using the pre-processing techniques. A final comment is that

even with just 10 requests, the BP is unable to solve all instances within 2 hours. These are all

instances that combines the lowest weight with the widest time windows.

21

Preliminary version – February 17, 2023 – 9:16

Table 3: The number of instances with a given number of requests where the BP method can find an optimal
solution (# opt.) and a dual bound (# DB), and the average computing time (Avg. time) used, with and without
the preprocessing techniques from Section 4.5.

Without preprocess With preprocess
requests # opt. # DB Avg. time # opt. # DB Avg. time

10 63 63 1218.79 66 68 631.99
15 46 47 3063.39 60 60 1217.78
20 28 29 4575.96 58 60 1679.74
25 23 24 4989.11 58 60 1801.29
50 6 6 6873.35 31 37 4357.43

Total 166 169 4144.12 273 285 1937.64

To further investigate when the pre-processing techniques work well, we have aggregated the

results based on the width of the time windows in Table 4. As we can see from the table, the

pre-processing is extremely effective when the time windows are narrow, as it is able to solve all

the instances with time window width between 12 − 24 hours, and all but 7 instances with time

window width in the range 24−48 hours. The computing time difference is also considerable, going

from close to 2700 seconds to 40 seconds for the former, and reducing the computing time to about

one third for the latter time window width. For the widest time window range the improvement

is less considerable, although the number of instances solved within the time limit is more than

doubled. The results are in line with what one would expect, since narrow time windows increases

the number of infeasible (partial) paths, and therefore we are able to both remove partial paths

earlier, and increase the set of unreachable nodes.

Table 4: The number of instances with a given time window width where the BP method can find an optimal
solution (# opt.) and a dual bound (# DB), and the average computing time (Avg. time) used, with and without
the preprocessing techniques from Section 4.5.

Without preprocess With preprocess
Time Windows # opt. # DB Avg. time # opt. # DB Avg. time

12-24 81 81 2695.85 120 120 40.23
24-48 61 63 3775.15 103 109 1236.03
48-144 24 25 5961.36 50 56 4536.68

7.2. Parameter Tuning and Selection for the ALNS

The ALNS algorithm is dependent on the following parameters: wI , σ1, σ2, σ3, φ, µ, pshaw,

pworst, pscheduling, pneighborgraph, ξ, ξ, κ, c and τ . With such an exhaustive list of parameters,

finding the best combination of parameter values using parameter tuning was considered too time

consuming. Thus, the following parameters were set according to the implementation of Ropke

and Pisinger (2006): (wI , σ1, σ2, σ3, µ, c, κ, pshaw, pworst) = (1, 33, 13, 9, 100, 0.99975, 0.025, 3, 6).

However, Ropke and Pisinger (2006) used 9 for σ2 and 13 for σ3, i.e., finding a new and worse

solution was rewarded more than finding a new and improving. Furthermore, based on trial-

22

Preliminary version – February 17, 2023 – 9:16

and-error during development, ξ, was set to 5 % while phistorical was set equal to pworst, i.e., 3.

The remaining parameters were tuned in the following order based on the expected influence of the

parameter: ξ, φ, τ and pscheduling, resulting in the following parameter values: (ξ, φ, τ , pscheduling)

= (0.4, 0.075, 0.075, 4). The details of the parameter tuning phase is given in Appendix A.

7.3. ALNS Performance

The ALNS was tested with the operators described in Section 5. However, four variants of the

Shaw removal and Shaw scheduling removal operators were used, as they behave quite differently

with different weight settings. For Shaw removal four operators were created with different the

weight settings (αTmin , αT , αDW , αDV): (0.45, 0.45, 0.05, 0.05), (0.2, 0.2, 0.3, 0.3), (0.8, 0.2,

0.0, 0.0) and (0.2, 0.8, 0.0, 0.0), henceforth referred to as Shaw 1, Shaw 2, Shaw 3 and Shaw 4.

Similarly Shaw Scheduling 1− 4 were created with the weights (α1, α2, α3, α4, α5, α6): (0.05, 0.2,

0.05, 0.2, 0.3, 0.2), (0.2, 0.05, 0.2, 0.05, 0.3, 0.2), (0.45, 0.0, 0.05, 0.0, 0.3, 0.2), (0.0, 0.45, 0.0, 0.05,

0.3, 0.2). Thus, the ALNS can find the best weights for a given problem instance.

Table 5 shows the results, aggregated by the number of transportation requests, of running the

ALNS algorithm ten times on each instance in the instance sets 1–3. We have excluded instance

set 4 from this part of the test as some of these instances were used for parameter tuning in

Appendix A. The maximum, minimum and average optimality gap is found over all ten runs

for each instance. Furthermore, the average of the maximum, minimum, and average optimality

gaps is found over all instances with the same number of transportation requests. For instances

with up to 25 transportation requests, the ALNS finds close to optimal solutions with an average

optimality gap of less than 0.3 %. However, for 50 transportation requests, a major leap is seen as

the average optimality gap increases to 3.01 %. This is probably due to the increase in solution

space as the number of transportation requests increases. Nevertheless, the average minimum gap

of 2.08 % indicates that the ALNS finds better solutions, although not consistently.

Table 5: Average maximum, minimum and average gap over all instances after 10 runs for each instance based on
the number of transportation requests.

10R 15R 20R 25R 50R

Minimum Gap (%) 0.12 0.00 0.00 0.10 2.08
Average Gap (%) 0.12 0.00 0.01 0.28 3.01
Maximum Gap (%) 0.12 0.00 0.02 0.46 3.92

For the instances with 75-200 requests, we do not have any dual bound to compare the ALNS

results with, so we limit ourselves to report on the stability of the solutions provided. Table 6 shows

the average coefficient of variation (CoV) over all instances with the same number of transportation

requests. The table shows that for instances up to 20 requests, the ALNS (almost) always finds

the same solution, thus there is virtually no variance for those instances. For larger instances the

23

Preliminary version – February 17, 2023 – 9:16

results indicate that the ALNS performs consistently and, on average, the CoV in solution value

is not above 1 % for any number of customers.

Table 6: Average coefficient of variation over instances having the same number of transportation requests.

10R 15R 20R 25R 50R 75R 100R 150R 200R

CoV (%) 0.00 0.00 0.01 0.11 0.67 0.82 0.98 0.90 0.87

7.4. Operator Performance

Each operator’s performance in the ALNS algorithm is essential for the overall performance of

the search process, and the algorithm consists of 14 removal operators and 10 insertion operators.

To perform the analysis of operator performance, two different measures are introduced. First, the

number of times an operator finds a new best solution of the total number of new best solutions

found during testing. Second, the number of times an operator finds a new best solution or an

improving solution out of the total number of such solutions found during testing.

Table 7 shows the results for each removal operator on the two measures as well as the average

time usage of the operator over all operations. Worst Removal is the best performing operator

over both measures. Thus, removing requests contributing to a significant increase in the traveled

distance seems to work well over the given test instances. Outlier Removal is the worst performer

over both measures. When not considering the best and the worst performer, the rest of the removal

operators perform similarly, and it may be concluded that all operators contribute to the search

process. This includes the problem-specific Shaw Removal Scheduling, which removes requests

based on time usage, the distance between requests, and scheduling-specific measures. However,

the time usage of the operator is considerably higher than for the rest of the operators. This time

increase is expected to be due to the dependency on the scheduling algorithm for creating labels

holding information about the route schedule, which holds the requests to be removed. Finally,

Random Removal performs well as it is believed to contribute to the exploration of the solution

space.

24

Preliminary version – February 17, 2023 – 9:16

Table 7: The average score of each removal operator based on the two performance measures. The best score for
each measure is marked in bold. Furthermore, the average time usage of the operators is shown.

Operator Best (%) Best or Improving (%) T (ms)

Random 6.91 7.49 0.00
Worst 13.34 8.97 0.03
Route 5.99 6.65 0.00
Node Neighborhood 7.55 5.54 0.02
Outlier 3.42 4.99 0.01
Historical Knowledge 7.39 7.18 0.03
Shaw 1 7.07 7.35 0.01
Shaw 2 7.15 7.32 0.01
Shaw 3 7.10 7.49 0.01
Shaw 4 6.97 7.43 0.01
Shaw Scheduling 1 6.66 7.37 0.29
Shaw Scheduling 2 6.72 7.37 0.29
Shaw Scheduling 3 6.86 7.42 0.29
Shaw Scheduling 4 6.87 7.43 0.29

For the insertion operators, Table 8 shows the performance of each operator on the two mea-

sures as well as the average time usage of each operator. Greedy Insertion is the best performance

over both measures and is, together with Greedy Insertion with Noise, the least time-consuming

operator. However, also 2-regret and 3-regret with and without noise perform well, although being

more time-consuming. GRASP Negative is the worst performer over both measures. However,

allowing for inserting requests giving negative profit facilitates the inclusion of combinations of re-

quests, giving a positive profit, although each request contributes with a negative profit in isolation.

Thus, although performing poorly, the operator is expected to be essential for certain combina-

tions of routes otherwise not accounted for by the other operators. This is a problem that must be

accounted for when considering optional requests. Furthermore, V-regret is time-consuming and

contributes significantly less in the search process as compared to Greedy, 2-regret, and 3-regret.

As expected, the insertion operators are more time-consuming than the removal operators.

Table 8: The average score of each insertion operator on the two measures, and the average time usage of each
insertion operator. The best score for each measure is marked in bold.

Operator Best (%) Best or Improving (%) T (ms)

Greedy 16.02 12.59 0.25
Greedy with Noise 13.42 12.29 0.24
GRASP 5.02 8.88 0.36
GRASP Negative 1.07 1.15 1.82
2-Regret with Noise 12.35 12.05 0.82
2-Regret 12.72 11.37 0.85
3-Regret with Noise 10.48 11.32 1.31
3-Regret 12.60 11.21 1.38
v-regret with Noise 7.50 9.46 2.98
v-regret 8.82 9.67 3.03

Figure 5 and Figure 6 shows the development of selection probability of the removal and inser-

tion operators when solving instance 3D100R16V24-48T10-20W, respectively. As operator perfor-

25

Preliminary version – February 17, 2023 – 9:16

mance is dependent on both randomness and the instance being solved, no conclusions can be made

from the given plots. Nevertheless, note how Shaw Scheduling 2 contributes to the search process

early on, while Worst Removal and Historical Knowledge Removal contribute later. For the latter,

better performance is expected as it depends on the requests’ historical position cost, which possi-

bly becomes more accurate as the search proceeds. Node Neighborhood Removal performs poorly

for the given instance, although being a good performer according to the two performance mea-

sures. For the insertion operators, the selection probability is more stable, and the well-performing

operators for the given performance measures are also performing well for the given instance.

Figure 5: The development of the probability of selecting each of the removal operators as the search proceeds. The
operator labels are sorted descending according to the last point on the line of their graph.

Figure 6: The development of the probability of selecting each of the insertion operators as the search proceeds.
The operator labels are sorted descending according to the last point on the line of the graph.

26

Preliminary version – February 17, 2023 – 9:16

7.5. Full Truckload vs Less-Than-Truckload

There are two main modes of operation within vehicle goods transportation (Hall, 2003): full

truckload transportation (FT), where there is at most one transportation request onboard each

vehicle at any time, and less-than-truckload transportation (LTT), where several request may be

are carried at the same time in order to fill the truck capacity. From a theoretical point of view, it

is clear that LTT leads to higher profits for the transportation company, as it is a relaxation of the

FT mode of operation. A challenge with this, however, is that the transportation company will

potentially move the goods of competing businesses together. Customers are then concerned that

their rivals can reap the benefits of high capacity utilization at their expense. Many customers

make contracts with transportation companies where they reserve an entire vehicle, although the

cargo size is significantly less than a full truckload. This makes the transportation mode FT,

although the size of the cargo give opportunities for LTT transportation. Such contracts lower the

opportunity for transportation companies to achieve economies of scale.

It is therefore likely that a transportation company would need to reduce prices in order for

customers to accept that their transported goods share a truck with those of other companies. In

this section we investigate the difference in profits for a transportation company from operating

their transportation network in FT and LTT mode, in order to see if the increase in profit is

significant enough to allow for reduced freight rates to the customers.

To compare the profits of FT and LTT we have run all test instances presented in Section

6 in FT mode using the ALNS. In order to test the FT mode, we have modified the insertion

operators so that it is only possible to insert the delivery node immediately after the pickup

node. Tables 9 and 10 compare the average LTT and FT objective values, the number of handled

requests, and the number of iterations of the ALNS, respectively, when each instance is run 10

times. The comparison is done by taking the average value of the LTT solution and dividing it by

the corresponding value for the FT solution. Table 9 shows the difference aggregated according to

the number of transportation requests, while Table 10 shows the differences aggregated according

to the different weight and time window intervals.

As can be seen from Table 9, the differences both in terms of objective value and number of

handled requests are quite stable across the number of requests. The objective value increases by

roughly 50 − 70 %, while the number of requests handled increase by 35 − 60 %. The number of

iterations are reported simply to show that the FT version of the ALNS have actually run two to

four times as many iterations as the LTT, and thus it is likely that, if anything, the test results

are skewed in favour of the FT version.

The results presented in Table 10 give some indication as to what characteristics of an instance

leads to the biggest benefits from using LTT over FT. Unsurprisingly, small cargo sizes and wide

time windows leads to a larger difference in both profit and the number of handled requests since

27

Preliminary version – February 17, 2023 – 9:16

this allows for more combinations of transportation requests to be transported simultaneously.

Table 9: Comparison of objective value, handled requests, and iterations performed between LTT and FT with
respect to the number of freight order requests.

10R 15R 20R 25R 50R 75R 100R 150R 200R

Objective value (LTT/FT) 160.86% 168.69% 167.75% 152.19% 165.82% 162.85% 166.97% 170.79% 172.08%

Handled requests (LTT/FT) 160.76% 141.22% 143.23% 136.26% 137.85% 135.86% 139.31% 141.43% 145.17%

Iterations (LTT/FT) 50.03% 39.72% 33.96% 30.81% 25.41% 23.31% 22.73% 25.83% 27.30%

Table 10: Comparison of objective value, handled requests, and iterations performed between LTT and FT with
respect to time window interval, weight interval, and overall.

Overall 1-10W 10-20W 12-24T 24-48T 48-144T

Objective value (LTT/FT) 164.78% 174.20% 155.36% 133.49% 165.94% 194.91%

Handled requests (LTT/FT) 141.94% 151.45% 132.44% 132.54% 143.89% 149.41%

8. Concluding remarks

This paper has presented a new problem to the operations research community, where the

vehicle routing problem with pickup and deliveries is combined with truck driver scheduling. The

problem is relevant in many settings where third party transportation companies operate in long

haul trucking. We present the problem, along with both an exact and heuristic solution method

to solve it. The exact method is a branch-and-price (BP) method, where the subproblem is

solved as a resource constrained shortest path problem. Several preprocessing techniques are

proposed to accelerate the solution time. Further the heuristic solution method is an adaptive large

neighborhood search (ALNS) where several new operators, tailored to this problem, is proposed.

We further present a set of 648 benchmark instances for the problem, based on the geography

and road network of Norway. When testing the proposed methodologies on these instances we see

that the BP method can solve instances with up to 50 transportation requests within a two hour

time limit. We further see, that the proposed pre-processing techniques significantly improves the

solution time and increases the number of instances solved from 166 to 273, while reducing the

computing time by more than 50 %. The ALNS heuristic can find near optimal solutions to all

instances solved to optimality, and solves instances with up to 200 requests within 20 minutes.

Further analysis of the ALNS shows that the new operators proposed contributes to the search.

Finally, a comparison between full truckload, and less than truckload, mode of operation is

studied. The results indicate that for long haul transportation companies there is a significant

potential to increase profits by allowing a truck to handle several transportation requests simul-

taneously. The results further show, that the benefit of allowing this increases when the time

windows are wide and/or the transported quantities are small.

28

Preliminary version – February 17, 2023 – 9:16

References

Archetti, C., Savelsbergh, M., 2009. The trip scheduling problem. Transportation Science 43,

417–431.

Archetti, C., Speranza, M.G., Vigo, D., 2014. Chapter 10: Vehicle routing problems with profits,

in: Vehicle Routing: Problems, Methods, and Applications, Second Edition. SIAM, pp. 273–297.

Baldacci, R., Bartolini, E., Mingozzi, A., 2011. An exact algorithm for the pickup and delivery

problem with time windows. Operations research 59, 414–426.

Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W., Vance, P.H., 1998. Branch-and-

price: Column generation for solving huge integer programs. Operations research 46, 316–329.

Bent, R., Van Hentenryck, P., 2003. A two-stage hybrid algorithm for pickup and delivery vehicle

routing problems with time windows, in: International Conference on Principles and Practice of

Constraint Programming, Springer. pp. 123–137.

Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G., 2007. Static pickup and delivery

problems: a classification scheme and survey. Top 15, 1–31.

Christiansen, M., Fagerholt, K., 2014. Chapter 13: Ship routing and scheduling in industrial and

tramp shipping, in: Vehicle Routing: Problems, Methods, and Applications, Second Edition.

SIAM, pp. 381–408.

ColliCare, . Lasteenheter for veitransport. URL: https://www.collicare.no/kjekt-å-vite/

lasteenheter/lasteenheter-veitransport.

Cordeau, J.F., 2006. A branch-and-cut algorithm for the dial-a-ride problem. Operations Research

54, 573–586.

Cordeau, J.F., Laporte, G., Savelsbergh, M.W., Vigo, D., 2007. Chapter 6: Vehicle routing,

in: Barnhart, C., Laporte, G. (Eds.), Transportation. Elsevier. volume 14 of Handbooks in

Operations Research and Management Science, pp. 367 – 428.

Curtois, T., Landa-Silva, D., Qu, Y., Laesanklang, W., 2018. Large neighbourhood search with

adaptive guided ejection search for the pickup and delivery problem with time windows. EURO

Journal on Transportation and Logistics 7, 151–192.

Demir, E., Bektaş, T., Laporte, G., 2012. An adaptive large neighborhood search heuristic for the

pollution-routing problem. European Journal of Operational Research 223, 346–359.

Desaulniers, G., Desrosiers, J., Solomon, M.M., Soumis, F., Villeneuve, D., et al., 1998. A unified

framework for deterministic time constrained vehicle routing and crew scheduling problems, in:

Fleet management and logistics. Springer, pp. 57–93.

29

Preliminary version – February 17, 2023 – 9:16

Desaulniers, G., Lessard, F., Hadjar, A., 2008. Tabu search, partial elementarity, and generalized

k-path inequalities for the vehicle routing problem with time windows. Transportation Science

42, 387–404.

Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F., 1995. Time constrained routing and

scheduling. Handbooks in operations research and management science 8, 35–139.

Doerner, K.F., Salazar-González, J.J., 2014. Chapter 7: Pickup-and-delivery problems for people

transportation, in: Vehicle Routing: Problems, Methods, and Applications, Second Edition.

SIAM, pp. 193–212.

Drexl, M., Prescott-Gagnon, E., 2010. Labelling algorithms for the elementary shortest path

problem with resource constraints considering eu drivers’ rules. Logistics Research 2, 79–96.

European Union, 2006. European union, 2006. regulation (ec) no 561/2006 of the eu-

ropean parliament and of the council of 15 march 2006 on the harmonisation of cer-

tain social legislation relating to road transport and amending council regulations (eec)

no 3821/85 and (ec) no 2135/98 and repealing council regulation (eec) no 3820/85.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R0561-20150302,

last accessed June 8, 2021.

Feo, T.A., Resende, M.G., 1989. A probabilistic heuristic for a computationally difficult set covering

problem. Operations research letters 8, 67–71.

Goel, A., 2009. Vehicle scheduling and routing with drivers’ working hours. Transportation Science

43, 17–26.

Goel, A., 2010. Truck driver scheduling in the european union. Transportation Science 44, 429–441.

Goel, A., 2012. The minimum duration truck driver scheduling problem. EURO Journal on

Transportation and Logistics 1, 285–306.

Goel, A., 2018. Legal aspects in road transport optimization in europe. Transportation research

part E: logistics and transportation review 114, 144–162.

Goel, A., Archetti, C., Savelsbergh, M., 2012. Truck driver scheduling in australia. Computers &

Operations Research 39, 1122–1132.

Goel, A., Irnich, S., 2017. An exact method for vehicle routing and truck driver scheduling prob-

lems. Transportation Science 51, 737–754.

Goel, A., Kok, L., 2012. Truck driver scheduling in the united states. Transportation science 46,

317–326.

30

Preliminary version – February 17, 2023 – 9:16

Goel, A., Rousseau, L.M., 2012. Truck driver scheduling in canada. Journal of Scheduling 15,

783–799.

Goel, A., Vidal, T., 2014. Hours of service regulations in road freight transport: An optimization-

based international assessment. Transportation science 48, 391–412.

Goel, A., Vidal, T., Kok, A.L., 2020. To team up or not: single versus team driving in european

road freight transport. Flexible Services and Manufacturing Journal , 1–35.

Gschwind, T., Drexl, M., 2019. Adaptive large neighborhood search with a constant-time feasibility

test for the dial-a-ride problem. Transportation Science 53, 480–491.

Gschwind, T., Irnich, S., Rothenbächer, A.K., Tilk, C., 2018. Bidirectional labeling in column-

generation algorithms for pickup-and-delivery problems. European Journal of Operational Re-

search 266, 521–530.

Hall, R.W., 2003. Supply Chains, in: Hall, R.W. (Ed.), Handbook of Transportation Science.

Springer. chapter 15, pp. 561–597.

Homsi, G., Martinelli, R., Vidal, T., Fagerholt, K., 2020. Industrial and tramp ship routing

problems: Closing the gap for real-scale instances. European Journal of Operational Research

283, 972–990.

Irnich, S., Desaulniers, G., 2005. Chapter 2: Shortest path problems with resource constraints, in:

Column generation. Springer, pp. 33–65.

Koç, Ç., Jabali, O., Laporte, G., 2017. Long-haul vehicle routing and scheduling with idling

options. Journal of the operational research society , 1–13.

Kok, A.L., Meyer, C.M., Kopfer, H., Schutten, J.M.J., 2010. A dynamic programming heuristic

for the vehicle routing problem with time windows and european community social legislation.

Transportation Science 44, 442–454.

Li, F., Golden, B., Wasil, E., 2007. The open vehicle routing problem: Algorithms, large-scale test

problems, and computational results. Computers & operations research 34, 2918–2930.

Li, H., Lim, A., 2003. A metaheuristic for the pickup and delivery problem with time windows.

International Journal on Artificial Intelligence Tools 12, 173–186.

Lübbecke, M.E., Desrosiers, J., 2005. Selected topics in column generation. Operations research

53, 1007–1023.

Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jiménez, H.F., Herazo-Padilla, N., 2015. A lit-

erature review on the vehicle routing problem with multiple depots. Computers & Industrial

Engineering 79, 115–129.

31

Preliminary version – February 17, 2023 – 9:16

Nanry, W.P., Barnes, J.W., 2000. Solving the pickup and delivery problem with time windows

using reactive tabu search. Transportation Research Part B: Methodological 34, 107–121.

Prescott-Gagnon, E., Desaulniers, G., Drexl, M., Rousseau, L.M., 2010. European driver rules in

vehicle routing with time windows. Transportation Science 44, 455–473.

Rancourt, M.E., Cordeau, J.F., Laporte, G., 2013. Long-haul vehicle routing and scheduling with

working hour rules. Transportation Science 47, 81–107.

Ropke, S., Cordeau, J.F., 2009. Branch and cut and price for the pickup and delivery problem

with time windows. Transportation Science 43, 267–286.

Ropke, S., Cordeau, J.F., Laporte, G., 2007. Models and branch-and-cut algorithms for pickup

and delivery problems with time windows. Networks: An International Journal 49, 258–272.

Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. Transportation science 40, 455–472.

Tilk, C., Goel, A., 2020. Bidirectional labeling for solving vehicle routing and truck driver schedul-

ing problems. European Journal of Operational Research 283, 108–124.

Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W., 2012. A hybrid genetic algorithm

for multidepot and periodic vehicle routing problems. Operations Research 60, 611–624.

Zäpfel, G., Bögl, M., 2008. Multi-period vehicle routing and crew scheduling with outsourcing

options. International Journal of Production Economics 113, 980–996.

32

Preliminary version – February 17, 2023 – 9:16

Appendix A. Parameter tuning for the ALNS

The Parameter tuning was performed on 12 instances from a 4D dataset, using an average

normalized objective value. First, the average objective value over five runs on each instance

for a given parameter value is calculated. This is performed for all parameter values for a given

parameter. Second, the maximum and minimum average objective value of the instance when

varying the parameter value is found and utilized to normalize the averages for the given instance

over all parameter values of the parameter. Finally, the average over all normalized averages is

calculated for each parameter value, and the parameter yielding the highest normalized average

becomes the chosen parameter value.

With the minimal removal percentage, ξ, set to 5 % based on trial-and-error, the maximal

removal percentage, ξ, is tuned according to the tuning strategy. It determines the upper limit of

removals as a given percentage of the number of transportation requests currently transported in the

solution. The maximal removal percentage should not be set too high as Ropke and Pisinger (2006)

indicate that insertion operators are poor when construction solutions from nothing. Consequently,

values ranging from 10% to 50% are tested for ξ and the normalized average objective values from

the tuning process are shown in Table A.11. With an average normalized objective value of 68.63

%, a parameter value of 40 % is shown to perform best on the test instances and is thus chosen as

the parameter value.

Table A.11: Normalized average of the objective value as the value of the maximal removal percentage, ξ, varies.

Parameter Value (%) 10 20 30 40 50

Normalized Average (%) 39.54 38.60 57.74 68.63 64.74

The balance between the historical and the current performance over the last segment when

updating the weight of an operator is given by the momentum weight, φ. Thus, increasing the

value of momentum weight increases the emphasis on the current performance over the historical

performance of the operator. The parameter is tested for values ranging from 2.5 % to 12.5 %, and

the results from Table A.12 indicate that a momentum weight of 7.5 % gives the best performance

of the algorithm on the given test instances. Thus, this value is chosen as the final parameter

value.

Table A.12: Normalized average of the objective value as the value of the momentum weight, φ, varies.

Parameter Value (%) 2.5 5.0 7.5 10.0 12.5

Normalized Average (%) 35.55 33.87 77.14 60.27 39.71

The parameter, τ , is the temperature control used to set the start temperature such that a τ%

worse solution than the current solution is accepted with a probability of 50 %. A τ equal to 0

33

Preliminary version – February 17, 2023 – 9:16

% indicates that simulated annealing only accepts improving solutions. The normalized average

objective value over the parameter values 2.5%, 5%, 7.5%, 10.0% and 12.5% is shown in Table A.13,

respectively. For the test instances, a parameter value of 7.5 % gives the best solutions, while also

a parameter value of 2.5 % provides good solutions. Although achieving good performance with

both parameter values, a value of 7.5 % is chosen due to achieving the best normalized average,

and that it is expected that 2.5 % may give too little exploration of the search space.

Table A.13: Normalized average of the objective value as the value of the temperature control, τ , varies.

Parameter Value (%) 2.5 5.0 7.5 10.0 12.5

Normalized Average (%) 60.19 49.69 61.25 37.34 55.37.

Finally, the randomness of the Shaw Removal Scheduling operator is determined by the pa-

rameter pscheduling where a value of 1 gives an entirely random operator, and a higher value leads

to less randomness. Table A.14 shows the normalized average objective values for the parameter

tuning process over the values 3, 4, 5, 6, and 7, and the results indicate that a value of 4 achieves

the best results on the test instances. Thus, pscheduling is set to 4.

Table A.14: Normalized average of the objective value as the value of the randomness in Shaw Removal Scheduling,
pscheduling , varies.

Parameter Value 3 4 5 6 7

Normalized Average (%) 45.43 64.43 51.84 40.94 41.12

34

Preliminary version – February 17, 2023 – 9:16

